Power Congestion Management in IEEE30 Bus System

$250.00

This product deals with congestion management issue in the deregulated environment of the power sector. We have developed a MATLAB code which deals with this problem by rescheduling the generation level of generators at minimum cost and with a minimum loss, subjected to load balance. This repository contains:

  • MATLAB code for Congestion Management

Note: We don’t support to copy this code for your academic submission. This is to ease your pain to start writing code from scratch. We suggest modifying the code for your work. The Optimization algorithms are quite dynamic, so we don’t claim the same improved results in every trial.

Description

Introduction

Congestion management is necessary to tackle load demand in the power system. In our work, we have done this by using PeSOA (penguin search optimization algorithm) optimization for IEEE 30 bus system. The IEEE 30 bus system consists of 6 generators buses, 24 load buses, and 41 transmission lines. The real load of the system is 283.4MW and reactive load is 126.2MVAR. The load bus voltages are maintained between 0.9 and 1.1 p.u. Price bids are submitted by Generating Companies (Gencos) for test system according to which rescheduling of generators occur and the specification of the generators of the bus system are given in Table 1.

Gen No Min P Max P Min Q Max Q Pc Cu Cd Max MVA Bus no
1 0 360.2 -30 100 0 22 18 250 1
2 20 140 -30 100 140 21 19 100 2
3 15 100 -30 100 40 42 38 80 5
4 10 100 -30 100 40 43 37 60 8
5 10 100 -30 100 24 43 35 50 11
6 12 100 -30 100 24 41 39 60 13

Add Congestion in Network

To add congestion in the network we intentionally added Outage of the line 4-6 and increase of load at bus 8 to 23 by 50%. It helps us to demonstrate the congestion management scheme in the system. After adding congestion newton raphson load flow analysis is done and power flow in branches is shown in table 5.2 for both cases i.e. with congestion and compensated congestion (discussed ahead) along with the maximum limits of power flow in each line. If any line violates this limit then congestion is considered in that line. We have considered the particle swarm optimization (PSO) for comparison with PeSOA since PeSOA is developed over PSO platform. Table 2 shows the congestion managed line flows for both optimization cases.

 

From Bus To Bus Congested Line Flow Congestion managed line flow by PSO Congestion managed line flow by PeSOA Limit of line flow
1 2 216.081362873671 14.0998872357903 43.1251184635087 130
1 3 109.077197041038 -11.1337740266368 7.26421458132521 130
2 4 53.2348933397253 -16.9664714160804 -5.61665075317485 65
3 4 101.800755740037 -13.7072469327290 4.77826121244994 130
2 5 91.8686679637457 53.1605219987248 58.5398422400552 130
2 6 81.2878597219604 -3.94938874631174 8.13297634034099 65
4 6 119.290127893008 53.8427516982375 57.9652250595165 90
5 7 -6.14287015731922 -42.2881477067936 -37.1653122046352 70
6 7 29.2347524592928 67.2026095814695 61.6772996595665 130
6 8 43.1017428686323 26.3351975621824 39.9431150833226 32
6 9 38.7320023061221 -44.4404166891601 -49.1619207024350 65
6 10 22.0104270586151 -23.3265321157728 -16.4052826587808 32
9 11 1.38777878078145e-14 -10.5124127822219 -59.5336418647750 65
9 10 38.7320023061220 -33.9280039069457 10.3717211623418 65
4 12 65.0005353366148 -74.4600479429099 -47.1653052640778 65
12 13 2.42861286636753e-14 -72.9371937837922 -49.6722203825242 65
12 14 11.4852554010754 11.3238052366744 13.0755391852549 32
12 15 25.7057777317269 32.2646708077852 32.5025738282765 32
12 16 11.0095022038124 18.1979794405344 15.4162141131796 16
14 15 2.02852758293690 4.98359303540007 3.58692915932430 16
16 17 5.64083589146195 14.4209065425481 9.96420049743881 16
15 18 9.42946573229076 10.9798706561239 11.1593848070714 16
18 19 4.53331279054969 7.66039982864500 6.23453593856443 16
19 20 -9.73026595797842 -1.87534840020770 -8.03904748922263 16
10 20 13.2318330379178 4.11872638287960 11.4942208087037 32
10 17 7.91110569482721 -5.23881438450684 3.62458303936382 32
10 21 25.4368956120822 15.5078759568119 27.7769751217543 32
10 22 5.46259501991034 12.8674369510809 12.9791360787767 32
21 23 -1.07652892890491 -2.12598352813885 1.23335093866640 32
15 23 5.55792955454041 17.4017168613355 11.9721217817741 32
22 24 5.43229403185675 12.7563417770619 12.8667100481899 16
23 24 -0.357731460180524 11.7935684816078 8.27270304570332 16
24 25 -3.67804323821013 15.4964522838742 12.1744529735436 16
25 26 3.54621773645282 3.54582147782035 3.54531208502573 16
25 27 -7.26706872934651 11.4806092529309 8.34144587611262 16
28 27 20.6168206989131 2.01348541513320 5.06136613635792 16
27 29 6.19422335630399 6.19398243168133 6.19239665058304 65
27 30 7.09746262965867 7.09715514397189 7.09513120320249 16
29 30 3.70502427797168 3.70495049032661 3.70446488546962 16
8 28 -2.14282673247694 -3.81172144200995 -5.28511213610207 26
6 28 22.8574029633774 5.85150819870413 10.3884430003831 32

In this case, a line such as 1-2, 2-6, 4-6, 6-8, 4-12 and 28-27 get overloaded as a consequence of outage of line 4-6. The flow limits in those lines are violating. Net power violation is found to be 187.37 MW as given in table 3. For a secure system, the power flow in the transmission line should not exceed their permissible limit. Hence suitable corrective action should be carried out to alleviate the above said overloads.

Table 3: Simulated Case

Type of Contingency Congested  Lines Line Power (MW) % Overload Total Power Violation (%)
Outage of line 4-6 1-2 216.081362873671 66.22 187.37
2-6 81.2878597219604 25.06
4-6 119.290127893008 32.54
6-8 43.1017428686323 34.69
4-12 65.0005353366148 8.2359e-04
28-27 20.6168206989131 28.86

Sensitivity Analysis for Congested Bus Detection

To take out the potential buses sensitivity analysis is done and we have picked up the top 4 highest sensitive buses on which renewable energy source will be inserted to provide extra power to mitigate congestion. These are 2,6,27 and 25. On these buses, a renewable energy source will be added to get more active power in the system. To know more about sensitivity analysis, we recommend reading our article

Optimal Placement of Distribution Generators in IEEE 14 Bus System

Distribution Generators Insertion

Here in this work, only active power insertion in the system is considered, so renewable energy source like a solar cell, wind plant which generates active power can be introduced in our system to avoid congestion. PeSOA optimization is used to decide the optimal size of the renewable energy source placed on the potential buses. The objective function is a combination of the total cost incurred in congestion management and penalty function based on the distance of a solution from the feasible region, so it should be minimized.

Objective Function

The objective function for power congestion management to get the desired minimum rescheduled cost is

objf=F+P

where F=fitness function to regulate the power congestion management cost, and

P = a penalty function based on distance of a solution from the feasible region

The cost of placing the DG on the buses is defined as

F  = ∑g€Ng (Cug×∆PuGg +Cdg×∆PdGg)

where

F=total cost incurred for congestion management in ($/hr)

∆PuGg  = active power increment of generator g due to congestion management (MW)

∆PdGg _=  active power decrement of generator g due to congestion management (MW)

Cug  =   price bids submitted by generator g to increase its pool power for congestion management ($/MWhr)

Cdg  = price bids submitted by generator g to decrease its pool power for congestion management ($/MWhr)

This cost of congestion management is constrained by many equality and inequality constraints

Equality Constraints
  1. PGi –PDi = Vi ∑Nji Vj (Gijcosθij – Bijsinθij)

  2. QGi –QDi = Vi ∑Nji Vj (Gijsinsθij – Bijcosθij)

  3. PGg  = PCGg + ∆PuGg – ∆PdGg                   

  4. PDJ = PCDJ              

NB = no. of buses

PGi = generated real power at bus i (MW)

PDi  = real load power at bus i (MW)

QGi = generated reactive power at bus i (MVar)

QDi = reactive load power at bus i (MVar)

Vi = voltage at bus i (Volt)

Gij = conductance of line between i & j (mho)

Bij = suseptance of line between i & j (siemens)

θij = admittance angle of line between buses i and j (radian)

k = number of participating generator

PGg = final real power generation of generator g (MW)

PCGg = active power produced by generator g as determined by the market clearing price (MW)

PDJ = final real power consumption at load bus j (MW)

PCDJ  = active power consumed by load bus j as determined by the market clearing price (MW)

The equality constraints represent the power flow equation. The constraints maintain the generated power at a bus satisfying both the load and the loss successfully for both real and reactive power.

Inequality Constraints

PminGg ≤ PGg ≤ PmaxGg g € Ng              

PminGg  = minimum real power limit of generator (MW)

PmaxGg  = maximum real power limit of generator (MW)

PGg  = final real power generation of generator (MW)

The generated real power of the generator is within the upper and lower limit of the generator

QminGg ≤ QGg ≤ QmaxGg g € Ng   

QminGg  = minimum reactive power limit of generator (MVar)

QmaxGg   = maximum reactive power limit of generator (MVar)

QGg =final reactive power generation of generator (MVar)

The generated reactive power of the generator is within the upper and lower limit of the generator

Pg – Pming = ∆Pming  ≤  ∆Pg   ≤  ∆Pmaxg  = Pmaxg –Pg     

The upper and lower bound of real power adjustment

 Vlmin ≤ Vl ≤   Vlmax     l € Nl                                                                                                      

Vlmin = minimum voltage of load bus (Volt)

Vlmax  = maximum voltage of load bus (Volt)

Vl  = voltage of load bus (Volt)

Nl  = no. of load bus

This is a security constraint and provides the upper and lower voltage bound of load buses.

 Pij ≤ Pijmax                                                                                                                                                               

Pij = real power flow in line i-j (MW)

Pijmax  = maximum power flow limit of line i-j (MW)

The line loading should not exceed the maximum limit.

The penalty factor P is also formulated as:

P = pf1 ∑Nl i=1 max (0, Pl) + pf2 ∑NBj=1 max (0, Pv) + pf3max (0, Ps)

Pf1, Pf2, Pf3 are user-defined and Pl, Pv, Ps can be checked here.

Conclusion

The objective of this project is to minimize or alleviate power congestion of the network by the rescheduling of the active power of generators at minimum cost satisfying the operational constraints. The method proposed here using PeSOA optimization has been implemented on IEEE 30 bus system. The congestion is knowingly introduced by increasing the outage in line 2-3 for the test purpose and has been successfully managed with minimum cost and maintaining system constraints. Results of PeSOA are compared with PSO optimized results and unoptimized results. An improvement 47.38% from unoptimized results and approx 12% form PSO in total line losses are observed by PeSOA algorithm. The total change in the active power of generators is also less than PSO case and cost is also reduced.

So in a compact sense, in the deregulated market scenario this technique is acceptable both technically and economically.

Note: The performance of PeSOA might not improve than PSO in every trial. However, the optimized results are better than unoptimized.

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.